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Abstract

The present paper extends the method of integral equation developed in Part I "Roy and Chatterjee\ 0883#
to the three!dimensional problem of interaction between two equal coplanar elliptical cracks embedded in
an in_nite isotropic elastic medium under shear loading[ The dual integral equations obtained from the
mixed boundary value problem in the present situation are coupled and reduced to in_nite systems of
Fredholm integral equations of the second kind*four systems corresponding to the _rst crack and four to
the second crack[ Analytical expressions for the two tangential displacement functions have been given up
to the order b4 "b being the crack separation parameter#[ Numerical results for the two shear stress intensity
factors\ K1"8# and K2"8#\ together with the interaction e}ects have been tabulated and illustrated graphically[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Most of the structures "e[g[ nuclear reactors\ pressure vessels\ etc[# contain cracks developed
during the manufacturing process\ fabrication or service period which experiences combined mode
of crack!surface displacements due to the complex mode of loading conditions[ Pure mode II is
experienced by shear webs in aircraft structures "see e[g[ Toor\ 0864#[ The mechanism of the {{after!
shock|| phenomenon of an earthquake can be well explained by investigating the stress distribution
due to an elliptical crack under shear "see e[g[ Kostorov and Das\ 0873#[ Thus\ the problem of
cracks in a pure shear elastic _eld is of considerable interest[ But\ the majority of theoretical and
numerical linear elastic fracture mechanics investigations have been carried out under tension
loading conditions in both two and three dimensions*possibly due to simplicity in the associated
mathematics[ Whatever theoretical studies exist in the literature regarding cracks under shear
loading*they are mostly limited to isolated crack con_gurations "see e[g[ Kassir and Sih\ 0864 ^
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Krenk\ 0868 ^ Martin\ 0875 ^ Nishioka and Atluri\ 0872 ^ Segedin\ 0840 ^ Smith and Sorensen\
0863#[

Any material body contains a system of cracks rather than an isolated one which interact to
form major cracks leading to fracture[ The only analytical works\ about which the authors are
aware regarding interaction of the three!dimensional cracks under shear loading\ are those of Fu
and Keer "0858# and Kachanov and Laures "0878#[ Both the solutions are limited to circular
cracks[ Fu and Keer "0858# did neither discuss the interaction e}ects nor evaluated the stress
intensity factors which are of physical interest[ Kachanov and Laures "0878# computed some
numerical results for the stress intensity factors for closely spaced penny shaped cracks under both
normal and shear loadings[ But\ in reality\ ~aws in three!dimensional structural components may
be _tted more accurately by elliptical cracks which can also take into account various crack shapes[
In practice\ this is often done in pressure vessels or aircraft attachment lugs "see e[g[ ASME\ Boiler
and Pressure Vessel Code\ 0866#[

Although di}erent numerical methods "e[g[ _nite element method\ _nite element alternating
method or body force method# may calculate the stress intensity factors\ the authors are unaware
of any analytical solution of interacting elliptical cracks under shear loading[ Thus\ the present
study is perhaps the _rst attempt in this direction[ The analytical technique of Part I of this paper
has been extended to solve the problem[ The mathematics has not been elaborated here for
simplicity[ For details one may refer to Part I[ The interesting features of the analytical solutions
and the physically important stress intensity factors and stress magni_cation factors are discussed
with illustrations[ As it will be seen that the usual de_nition of stress magni_cation factor

Mi �
Ki

K9
i

"i � 1\ 2#\

where Ki is the concerned stress intensity factor and K9
i is that of an isolated crack\ is not applicable

in the present case\ due to the vanishing of K9
i at certain crack!front points\ a new quantity\ the

resultant stress magni_cation factor M� has been de_ned here as

M�"8# �
ðK1

1"8#¦K1
2"8#Ł0:1

ðK91

1 "8#¦K91

2 "8#Ł0:1
"0[0#

where K1"8# is the shear stress intensity factor along the outward drawn normal to the crack!front
point 8 and K2"8# is that along the tangent at 8\ and K9

1"8# and K9
2"8# represents the same\

respectively\ for an isolated elliptical crack[ Analytical solutions for the tangential displacement
potentials are given up to the _fth order of the crack separation parameter b "�"a:f #\ {{a|| being
the semi!major axis of an elliptical crack and {{f || being the distance between the centres of the
two coplanar elliptical cracks# for constant shear loading {{p|| at an arbitrary direction x to the x!
axis[ The interaction e}ect for various crack shapes and separations have been illustrated graphi!
cally[ The e}ect of change in direction of the prescribed loading on the two cracks have been
illustrated for the two cases*"i# constant shear loading in the same direction on both the cracks ^
and "ii# constant shear loading in opposite directions on the two cracks[ For testing our results\
the limiting case f : � has been deduced\ which corresponds to the stress intensity factors for an
isolated elliptic crack and agrees with corresponding results given by Kassir and Sih "0864#[ In this
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Fig[ 0[ Geometry of a pair of equal\ coplanar elliptic cracks along with the local coordinate systems used[

case again the limiting case "b:a# � 0 has been deduced\ which corresponds to stress intensity
factors for an isolated circular crack[

The present interaction results have been compared with those presented by Kachanov and
Laures "0878# for the limiting case "b:a# � 0 and are found to agree well for moderately and widely
spaced cracks[ While comparing the present results with those presented in Table 3 of Kachanov
and Laures "0878# it is found that the di}erence in the results increases abruptly if the crack!tip
spacing decreases to one!tenth of the crack radius[ We don|t claim that our results are accurate
for such close interaction\ but for completion of the _gures they have been plotted together with
other results[

1[ Formulation of the problem

Consider two equal\ coplanar elliptical cracks embedded in an in_nite isotropic homogeneous
elastic medium with major axes collinear and occupying the regions "see Fig[ 0#

S0 ]
x1

a1
¦

y1

b1
¾ 0 ^ z � 9\

S1 ]
"x−f #1

a1
¦

y1

b1
¾ 0 ^ z � 9[ "1[0#

For crack surfaces loaded with arbitrary shear traction in an arbitrary direction\ symmetry
enables one to consider the equivalent half!space problem in z − 9 which then reduces to the
problem of solving the Lame� equation of elastostatic equilibrium

"l¦m# grad div uÝ¦m91uÝ � 9 "1[1#

subjected to the following mixed conditions on the surface z � 9 ]
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tzz"x\ y\ 9# � 9 [x\y

tzx"x\ y\ 9# � −s" j#
x "x\ y# [x\y $ Sj

tzy"x\ y\ 9# � −s" j#
y "x\ y# [x\y $ Sj "1[2#

and\

u" j#
x "x\ y\ 9# � u" j#

y "x\ y\ 9# � 9 [x\y ( Sj

where j � 0 for the elliptical crack S0 and j � 1 for S1[ The last boundary condition arises due to
symmetry of the problem[ uÝ in "1[1# represents the displacement vector uÝ �"ux\ uy\ uz#\ s" j#

x and
s" j#

y are the x and y components of the prescribed shear traction\ and other symbols have their
usual meaning[

An appropriate solution of uÝ for the present problem\ can be obtained in terms of two harmonic
potentials f"x\ y\ z# and c"x\ y\ z# as

uÝ � 9f¦
z

1"0−n#
9 0

1f

1z1−
2−3n

1"0−n#
1f

1z
eÝz¦9×"eÝzc# "1[3#

where n is the Poisson|s ratio and eÝz is a unit vector in the z direction[
Seeking solutions of f"x\ y\ z# and c"x\ y\ z# as

ðf"x\ y\ z#\ c"x\ y\ z#Ł �
0
1p g

�

−� g
�

−�

ðP"j\ h#\ Q"j\ h#Ł exp ði"jx¦hy#−l9zŁ dj dh "1[4#

where l9 �"j1¦h1#0:1\ one can show that the mixed boundary conditions are satis_ed if the
tangential crack!face displacements u" j#

x "x\ y# and u" j#
y "x\ y# satisfy the following coupled dual

integral equations ]

s
1

j�0 g
�

−� g
�

−� g g
Sj

l−0
9 0

j1¦"0−n#h1 njh

njh "0−n#j1¦h11 0
u" j#

x

u" j#
y 1

×exp ði"j"x−x?#¦h"y−y?##Ł dx? dy? dj dh

�
3p1"0−n#

m 0
s"k#

x "x\ y#

s"k#
y "x\ y#1\ [x\y $ Sk "k � 0\ 1#[ "1[5#

2[ Reduction of the coupled dual integral equations

For reducing the system of coupled dual integral equations\ one transforms to the polar co!
ordinate system via suitable transformations mentioned in Part I[ The elliptic domains are trans!
formed to circular domains[ A point P of the domain is related to the two local co!ordinate systems
centred at the origins of the both ellipses by the summation theorem of Bessel functions[ The
unknown displacement and known stress components are expanded in Fourier series of sines and
cosines[ After necessary manipulations\ the coe.cients of sines and cosines are equated from both
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sides to obtain a set of four in_nite systems of integral equations "two for the sine terms and two
for the cosine terms#[ Such a set is obtained for both cracks[

A further reduction of the two sets of integral equations to Fredholm integral equations of the
second kind is performed by relating the Fourier components of tangential displacements to
new entities by appropriate Abelian transformations and using standard results involving Bessel
functions "see e[g[ Part I#[

The _nal form of the Fredholm integral equations of the second kind for the two sets of equations
are written below ]

[s � 9\ 0\ 1\ [ [ [ \ �\ "n¦s# is even ^ for each s\ "n¦p# even ^ j\ r $ ð9\0Ł

0
G"i#

s\s"j#

L"i#
s\s"j#1¦ s

�

n�9
n�s
0
ðLn\s"j\ t#G"i#

n\s"t#Ł

ðLn\s"j\ t#L"i#
n\s"t#Ł1�"−0#i¦0 0

F "i#
s "j#

G "i#
s "j#1

−es s
�

n�9

s
�

p�9

"−0#n 0
ðKs\n\p"j\ t#G"2−i#

n\p "t#Ł

ðKs\n\p"j\ t#L"2−i#
n\p "t#Ł1\ i � 0\ 1 "2[0#

where

ðAn\s"t#Ł � g
0

9

An\s"t# dt "2[1#

G" j#
n\s "t# � os 0

Ic
n\s"A\ B#C" j# "t#¦Isc

n\sUÞ " j#
n "t#

Is
n\s"A\ B#CÞ " j# "t#¦Ics

n\sU" j#
n "t#1 "2[2#

L" j#
n\s "t# � os 0

Isc
n\sCÞ " j#

n "t#¦Ic
n\s"C\ D#U" j#

n "t#

Ics
n\sC" j#

n "t#¦Is
n\s"C\ D#UÞ " j#

n "t#1 "2[3#

0
Ic

n\s"L\ M#

Is
n\s"L\ M#1�

0
1

is"−i#n g
1p

9

L¦M cos 1X
D"k9# 0

cos nX cos sX

sin nX sin sX 1 dX "2[4#

0
Isc

n\s

Ics
n\s1�

0
1

is"−i#nk?9n g
1p

9

sin 1X
D"k9# 0

sin nX cos sX

cos nX sin sX1 dX "2[5#

"L\ M# �"A\ B# or "C\ D# where

A � 1−n−k1
9\ B � n−k1

9\ C � 1−n−"0−n#k1
9\ D � −n−"0−n#K1

9 "2[6#

k1
9 � 0−

b1

a1
\ k?9 �

b
a

\ D"k9# �"0−k1
9 cos1 X#0:1 "2[7#

os � 6
0\ s � 9

1\ s × 9
^ es �

0
1
os "2[8#
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Ln\s"j\ t# �"jt#0:1 g
�

9

kJn¦"0:1# "kt#Js¦"0:1# "kj# dk "2[09#

F "i#
s "j# � c9j

−s g
j

9

rs¦0

"j1−r1#0:1 0
p"i#

s "r#

p¹ "i#
s "r#1 dr "2[00#

G "i#
s "j# � c9j

−s g
j

9

rs¦0

"j1−r1#0:1 0
q"i#

s "r#

q¹ "i#
s "r#1 dr "2[01#

c9 �
1p"0−n#b

m
Ks\n\p"j\ t# � 0

Ks\n\p"j\ t# 9

9 −Ns\n\p"j\ t#1 "2[02#

where

0
Ks\n\p"j\ t#

Ns\n\p"j\ t#1� Ms
n\p¦s"j\ t#2"−0#sMs

n\p−s"j\ t# "2[03#

and

Ms
n\p2s"j\ t# �"jt#0:1 g

�

9

kJn¦"0:1# "kt#Js¦"0:1# "kj#Jp2s"kd9# dk "2[04#

where d9 �" f:a#[
Here C" j#

n \ CÞ " j#
n are the quantities which are related to the Fourier cosine and sine components

of the displacement component u" j#
x by Abelian transformation[ Similarly U" j#

n \ UÞ " j#
n correspond to

u" j#
y [ Also p" j#

s \ p¹ " j#
s are Fourier cosine and sine components corresponding to the x!component s" j#

x

of the prescribed traction and q" j#
s \ q¹ " j#

s are similar entities for s" j#
y [

It may be noted that the double summation term in the r[h[s[ of "2[0# contains the displacement
functions corresponding to the neighbouring elliptic crack and\ hence\ contributes to the interaction
e}ect[ Also it may be noted\ that this double sum contains Ms

n\p2s"j\ t# which has a closed form
expression ðsee e[g[ eqn "27# of part IŁ that can be expanded in a power series in b ð�"0:d9#Ł with
b2 in the _rst term[ Clearly\ for a _nite crack size

lim
d9:�

Ms
n\p2s"j\ t# � 9[

Thus\ the interaction e}ect decreases with increase in crack distance\ and we get back the single
crack solution as a limiting situation[ In this situation\ the in_nite system "2[0# reduces to a single
equation for the case s � 9\ and the single sum in the l[h[s[ of "2[0# is identically zero[ Therefore\
it may be remarked that the equations corresponding to the cases s − 0 together with the single
sum in l[h[s[ generate that part of the solution\ which re~ects the e}ect of the neighbouring crack
if the double sum in the r[h[s[ exists\ too\ for _nite d9[
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3[ Approximate analytical solution

The method of solution is the same perturbation technique as adopted in Part I of this paper[
Once the solution for the single cracks are obtained\ that for the neighbouring crack is substituted
in the r[h[s[ of "2[0# resulting in a known series in b[ Each term of the series corresponds to
particular values of s " _nite number# giving rise to a _nite set of linear equations[ Again\ each
term in powers of b is also a known polynomial in j[ Hence the right hand side of the set of linear
equations consists of polynomials in j\ so that the left hand side must also be a polynomial of the
same type in j[ Equating powers of j we get the solutions for the interaction e}ect[

The smaller the value of b\ the quicker is the convergence[ For non!overlapping cracks b ³ 0
1
\ so

the series always converges theoretically[ The only requirement is that for close cracks higher order
terms in b will be required[ Extraction of higher order terms in b requires intensive calculation\ so
from practical point of view\ in case of close cracks one must turn to numerical solution of the
integral eqns "2[0#[

In the present article analytical solutions are obtained up to the order b4 for a prescribed constant
tangential loading p in an arbitrary direction x to the x!axis[ The solutions are expected to yield
accurate results for moderately and widely spaced cracks[

We quote below the solutions for _rst crack "suppressing the superscript in the solutions# if the
major axis of the cracks are collinear ]

C9"j# � ða"9#
9 ¦a"0#

9 b2¦a"1#
9 b4Łj¦ða"2#

9 b4Łj2

C0"j# � ða"0#
0 b3Łj1

CÞ0"j# � ða¹ "0#
0 b3Łj1

C1"j# � ða"0#
1 b4Łj2

CÞ1"j# � ða¹ "0#
1 b4Łj2 "3[0a#

U9"j# � ðb"9#
9 ¦b"0#

9 b2¦b"1#
9 b4Łj¦ðb"2#

9 b4Łj2

U0"j# � ðb"0#
0 b3Łj1

UÞ0"j# � ðb¹ "0#
0 b3Łj1

U1"j# � ðb"0#
1 b4Łj2

UÞ1"j# � ðb¹ "0#
1 b4Łj2

Cn"j#\ CÞn"j#\ Un"j#\ UÞn"j# ¹ 9"b5# [n − 2[ "3[0b#

The di}erent symbols used in "3[0a\b# are given in Appendix A[

4[ Numerical results

Recently\ expressions for K1 and K2 at a representative point "a cos 8\ b sin 8# on the crack
border were given by Roy and Chatterjee "0881#\ following de_nitions of Martin "0875#\ as
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K1"8# �
1m

p"0−n#b 0
b
a1

0:1

"a1 sin1 8¦b1 cos1 8#−0:3×$ s
�

n�9

"b cos 8Cn"0#¦a sin 8Un"0## cos n8

¦ s
�

n�0

"b cos 8CÞn"0#¦a sin 8 UÞn"0## sin n8% "4[0#

and

K2"8# �
1m

pb 0
b
a1

0:1

"a1 sin1 8¦b1 cos1 8#−0:3×$ s
�

n�9

"−a sin 8Cn"0#¦b cos 8Un"0## cos n8

¦ s
�

n�0

"−a sin 8CÞn"0#¦b cos 8 UÞn"0## sin n8%[ "4[1#

In the limit f : �\ the above expressions reduce to

K9
1 � pk1

9zk?9"a1 sin1 8¦b1 cos1 8#−0:3

×$
a sin x sin 8

"k1
9¦nk?19#E"k9#−nk?19K"k9#

¦
b cos x cos 8

"k1
9−n#E"k9#¦nk?19K"k9#% "4[0a#

and

K9
2 � pk1

9zk?9"0−n#"a1 sin1 8¦b1 cos1 8#−0:3

×$
a cos x sin 8

"n−k1
9#E"k9#−nk?19K"k9#

−
b sin x cos 8

nk?19K"k9#−"k1
9¦nk?19#E"k9#%

k1
9 � 0−

b1

a1
\ k?9 �"0−k1

9#0:1 �
b
a

[ "4[1a#

These are expressions for K1 and K2 for an isolated elliptic crack under uniform shear loading p
at an arbitrary direction x to the x!axis given earlier by Kassir and Sih "0864\ eqns 2[43a and
2[43b#[ In the above expressions K"k9# and E"k9# are elliptic integrals of the _rst and second kind\
respectively[

For "b:a# � 0\ E"k9# � K"k9# �"p:1# and in that case "4[0a# and "4[1a# reduces\ respectively\ to

K9
1 �

1zap
p

cos"x−8# "4[0b#

and

K9
2 �

1zap"0−n#
p

sin"x−8#[ "4[1b#

These are the expressions for K1 and K2 for an isolated circular crack[
In the solutions "3[0a\b# a"9#

9 j and b"9#
9 j are the single crack solutions and the other terms are

present due to the e}ect of the second crack on the _rst\ and so necessarily contains the terms
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Table 0
Two equal coplanar circular cracks under shear loading[ The values of max K1:K

9
1 "n � 9[4#

max K1:K
9
1

" f :a#−1 Present method Kachanov and Laures Di}erence percentage

9[0 0[0192 0[2476 10[5
9[4 0[9502 0[9722 1[1
0[9 0[9298 0[9205 9[96
0[4 0[9065 0[9048 9[06
1[9 0[9098 0[9981 9[06
2[9 0[9949 0[9928 9[00
4[9 0[9905 0[9997 9[97

p"1#
9 "r# and q"1#

9 "r# in their expressions[ The solutions "3[0a\b# are given for the case where the
loading is in the same direction on both crack faces\ i[e[

p"0#
9 "r# � p"1#

9 "r# � p cos x\ q"0#
9 "r# � q"1#

9 "r# � p sin x[ "4[3a#

But another interesting case may be considered simultaneously\ where the loading is in the opposite
direction on the two crack faces\ i[e[

p"0#
9 "r# � −p"1#

9 "r# � p cos x\ q"0#
9 "r# � −q"1#

9 "r# � p sin x[ "4[3b#

In this case a negative sign will be introduced in the interaction terms due to the presence of the
terms p"1#

9 "r# and q"1#
9 "r#[ Thus\ it may be noted that when M�"8# will be plotted against the elliptic

angle 8\ the case "4[3b# will produce mirror symmetry of the case "4[3a# about M�"8# � 0[9[ This
situation has been illustrated graphically[

For the case of comparison\ the only results available to the authors are those of Kachanov and
Laures "0878# for the limiting case "b:a# � 0 "i[e[ for coplanar circular cracks# where the cracks
are strongly interacting[ It may be noted that the present de_nitions of K1 and K2 di}ers from
those of Kachanov and Laures "0878# by a factor of z1[

In the present article no attempt has been made to compare results of very close interactions[
For such interactions higher order terms in b are necessary in the solutions "3[0a\b#[ Also\ the
method of Kachanov and Laures "0878# is only an approximate one and not exact[ Hence their
solution requires further veri_cation[

In Table 0 the comparison has been performed for the maximum value of M1"8# with the
results given in Table 3 of Kachanov and Laures "0878# for n � 9[4[ The present results are
seen to conform with theirs for moderately and widely spaced cracks[ When the spacing
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Fig[ 1[ Variation of resultant stress magni_cation factor M�"f# with elliptic angle f for various crack separations
" f:a# � 1[0\ 1[4\ 2[9\ 4[9 when the shear stress is applied at x � 9> on both the cracks of aspect ratio 9[14[ n � 9[4[

"d9−1# � 9[4\ the di}erence in the two results is 1[1) and when it is 9[0 the di}erence increases
to 10[4)[ In the last case their result seems to be an overestimation of the exact result[

Figures 1 and 2 illustrate the variation of M�"8# with 8 for cracks with "b:a# � 9[14 at various
spacings[ These _gures illustrate the case "4[3a# ] for x � 59>\ Fig[ 2 reveals that M�"8# is a mixture
of ampli_cation and shielding[ Maximum shielding is attained at 8 � 299> and is about 0[70) for
"d9−1# � 9[0 and 9[70) for "d9−1# � 9[4[

Figures 3 and 4 illustrates the case "4[3b# for the same crack shape and spacings as in Figs 1 and
2[ The mirror symmetry of the Figs 1 and 2 about M� � 0[9 is observed in this case as mentioned
earlier[

Figure 5 illustrates the variation of M�"8# with 8 for di}erent x "case 4[3a# at "d9−1# � 9[4
with "b:a# � 9[14[

Figures 6 and 7 shows variations in M�"8# with change in b:a "case 4[3a#[ Narrower the crack\
larger is the region of shielding[ For "b:a# � 9[014 maximum shielding is about 1[1) attained at
8 � 299> and for "b:a# � 9[64 it is only about 9[92)[

Table 1 shows the values of maximum and minimum M�"8# for di}erent values of x and b:a
when "d9−1# � 9[4[ The values within the parenthesis are the angles where these are attained[

Figures 8 and 09 illustrates the dependence of M�"8# on n[ Figure 8 gives illustrations for x � 9>
and Fig[ 09 gives those for x � 59>[ Clearly\ increase in n increases the e}ect of interaction[
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Fig[ 2[ Same as Fig[ 1\ except that now the shear is applied at an angle x � 59> on both the cracks[

5[ Conclusions

An analytical solution to the problem of interaction between two coplanar elliptical cracks under
uniform shear loading at arbitrary direction has been obtained following the method of solution
in Part I of this paper[ The solutions are expected to be accurate for moderate and weak interactions[

In the limiting case f : �\ the stress intensity factors for isolated elliptic cracks under shear
loading were rederived[ Also\ in this case the results for the limiting case "b:a# � 0 were obtained
which gives results for isolated circular cracks under shear loading[

For moderate and wide spacings of the cracks\ the results for the limiting case of "b:a# � 0 were
compared with those given by Kachanov and Laures "0878# and found to be conformable[

The present solutions are expected to help structural engineers and material scientists to encoun!
ter more realistic situations of interactions under complex loading conditions[

Here solutions are given for moderately and weakly interacting coplanar elliptic cracks of equal
sizes when the major axis are collinear[ Other interesting situations\ where macrocracks interacts
with coplanar microcracks\ be it penny shaped or elliptical\ and positioned in arbitrary directions\
are under consideration and are expected to be reported in later publications[
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Fig[ 3[ Variation of resultant stress magni_cation factor M�"f# with elliptic angle f for same crack separations and
aspect ratio as in Fig[ 1 with the tangential loading now being applied at x � 9> on S0 and at x � 079> on S1[ n � 9[4[
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Fig[ 4[ Same as Fig[ 3 but the loading now acts along x � 59> on S0 and x � 139> on S1[
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Fig[ 5[ Variation of M�"f# with elliptic angle f for various loading angles x "same on both the cracks# when " f:a# � 1[4
and aspect ratio of the cracks is 9[14[ n � 9[4[

Fig[ 6[ Variation of M�"f# with f for various aspect ratios "9[64\ 9[4\ 9[14\ 9[014# when tangential loading angle x � 9>
on both the cracks and " f:a# � 1[4[ n � 9[4[



T[K[ Saha et al[:International Journal of Solids and Structures 25 "0888# 508Ð526 522

Fig[ 7[ Same as Fig[ 6\ except that now x � 59> on both the cracks[

Table 1
Two equal coplanar elliptical cracks of variable aspect ratio situated at a distance of 9[4a apart[ The values of maximum
and minimum resultant Stress Magni_cation factor M� for di}erent loading angles[ ðn � 9[4\ " f:a# � 1[4Ł

Max M�"f# Min M�"f#

b:a x: 9> 29> 59> 89> 9> 29> 59> 89>

9[64 0[93355 0[93497 0[91763 0[99018 0[90518 0[99817 9[88863 9[88881
"9># "234># "9># "34>\ 204># "024>\ 114># "094># "019># "9>#

9[4 0[91546 0[91670 0[90890 0[99963 0[99843 0[99468 9[88841 9[88846
"9># "234># "9># "29>\ 229># "024>\ 114># "144># "204># "9>#

9[14 0[90017 0[90140 0[99740 0[99038 0[99117 9[88382 9[88089 9[88729
"29>\ 229># "34># "34># "04>\ 234># "094>\ 144># "174># "299># "89>\ 169>#

9[014 0[99648 0[91977 0[90797 0[99112 9[88768 9[86830 9[86793 9[88631
"29>\ 229># "59># "59># "04>\ 234># "094>\ 144># "299># "299># "89>\ 169>#
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Fig[ 8[ Variation of M�"f# for various Poisson|s ratio n � 0
1
\ 0

2
\ 0

3
\ 0

4
when x � 9> on both the cracks of aspect ratio 9[4

and " f:a# � 1[4[

Fig[ 09[ Same as Fig[ 8\ except that now x � 59> on both the cracks[
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Appendix

List of symbols used in "3[0a# and "3[0b# ]

a"9#
9 � g

a"0#
9 �

1g

2p

s9

Ic
9\9"A\ B#

a"1#
9 �

0

Ic
9\9"A\ B# $"2g:4p#s0−

2
1

Ic
1\9"A\ B#A90−

2
1

Isc
1\9A91%

a"2#
9 � A92

a"0#
0 �

0
V0 $

1g

2p
s9I

s
0\0"C\ D#¦

1g

8p
p9I

sc
0\0%

a¹ "0#
0 � −

0
D0 $

1l

8p
p9I

c
0\0"C\ D#¦

1l

2p
s9I

cs
0\0%

a"0#
1 � A90

a¹ "0#
1 � B91

b"9#
9 � l

b"0#
9 �

1l

2p

S9

Ic
9\9"C\ D#

b"1#
9 �

0

Ic
9\9"C\ D# $"2l:4p#S0−

2
1

Ic
1\9"C\ D#B90−

2
1

Isc
1\9B91%

b"2#
9 � B92

b"0#
0 �

0
D0 $

1l

2p
S9I

s
0\0"A\ B#¦

1l

8p
p9I

sc
0\0%

b¹ "0#
0 � −

0
V0 $

1g

8p
p9I

c
0\0"A\ B#¦

1g

2p
s9I

cs
0\0%

b"0#
1 � B90

b¹ "0#
1 � A91

where\
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g �
1p"0−n#b

m
=

p cos x
Ic

9\9"A\ B#

l �
1p"0−n#b

m
=

p sin x
Ic

9\9"C\ D#

A90 �
0
90 $

1g

4p
s0G2¦

1g

2p
s1G4¦

05g

34p
p9G0"A\ B#%

A91 �
0
90 $

1g

4p
s0G6"A\ B#¦

1g

2p
s1G0"A\ B#−

05g

34p
p9V9"A\ B#%

A92 �
0
90 $

g

p
s0V1¦

4g

2p
s1G2¦

7g

8p
p9G1"A\ B#%

B90 �
0
91 $

1l

4p
S0G3¦

1l

2p
S1G5¦

05l

34p
p9G0"C\ D#%

B91 �
0
91 $

1l

4p
S0G4"C\ D#¦

1l

2p
S1G0"C\ D#−

05l

34p
p9V9"C\ D#%

B92 �
0
91 $

l

p
S0V2¦

4l

2p
S1G3¦

7l

8p
p9G1"C\ D#%[

Here\

V9"L\ M# � Ic
9\9"L\ M#Ic

1\1"L\ M#−"Ic
9\1"L\ M##1

V0 � Ic
0\0"A\ B#Is

0\0"C\ D#−"Isc
0\0#1

V1 � Ic
1\1"A\ B#Is

1\1"C\ D#−"Isc
1\1#1

V2 � Ic
1\1"C\ D#Is

1\1"A\ B#−"Isc
1\1#1

D0 � Ic
0\0"C\ D#Is

0\0"A\ B#−"Isc
0\0#1

90 � Is
1\1"C\ D#V9"A\ B#¦Isc

1\1G0"A\ B#¦Ics
9\1G1"A\ B#

91 � Is
1\1"A\ B#V9"C\ D#¦Isc

1\1G0"C\ D#¦Ics
9\1G1"C\ D#

G0"L\ M# � Ic
9\1"L\ M#Ics

9\1−Ic
9\9"L\ M#Ics

1\1

G1"L\ M# � Ic
9\1"L\ M#Ics

1\1−Ic
1\1"L\ M#Ics

9\1

G2 � Ic
9\1"A\ B#Is

1\1"C\ D#−Ics
9\1I

cs
1\1

G3 � Ic
9\1"C\ D#Is

1\1"A\ B#−Ics
9\1I

cs
1\1

G4 � Ic
9\9"A\ B#Is

1\1"C\ D#−"Ics
9\1#1

G5 � Ic
9\9"C\ D#Is

1\1"A\ B#−"Ics
9\1#1
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G6"L\ M# � Ic
1\1"L\ M#Ics

9\1−Ic
9\1"L\ M#Ics

1\1

p9 � 3 s
�

m�0

m"0−3m1#Ics
9\1m

s9 � Ic
9\9"A\ B#¦1 s

�

m�0

Ic
9\1m"A\ B#"0−3m1#

S9 � Ic
9\9"C\ D#¦1 s

�

m�0

Ic
9\1m"C\ D#"0−3m1#

s0 � Ic
9\9"A\ B#¦

1
8

s
�

m�0

Ic
9\1m"A\ B#"0−3m1#"8−3m1#

S0 � Ic
9\9"C\ D#¦

1
8

s
�

m�0

Ic
9\1m"C\ D#"0−3m1#"8−3m1#

s1 � Ic
9\9"A\ B#¦

1
04

s
�

m�0

Ic
9\1m"A\ B#"0−3m1#"04¦3m1#

S1 � Ic
9\9"C\ D#¦

1
04

s
�

m�0

Ic
9\1m"C\ D#"0−3m1#"04¦3m1#[
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